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Abstract

We present results for heavy-light decay constants, using both propagating quarks

and the static approximation, inO(a)-improved, quenched lattice QCD. At β = 6.2 on a

243×48 lattice we find fD = 185
+ 4

− 3
(stat)

+ 42

− 7
(syst) MeV, fB = 160

+ 6

− 6

+ 53

− 19
MeV,

fDs/fD = 1.18
+ 2

− 2
and fBs/fB = 1.22

+ 4

− 3
, in good agreement with earlier studies.

From the static theory we obtain f stat
B = 253

+ 16

− 15

+ 105

− 14
MeV. We also present results

from a simulation at β = 6.0 on a 163 × 48 lattice, which are consistent with those at

β = 6.2. In order to study the effects of improvement, we present a direct comparison

of the results using both the Wilson and the improved action at β = 6.0.



1 Introduction

The leptonic decay constants, fP , of pseudoscalar mesons composed of a heavy and a light

quark play an important rôle in weak-interaction phenomenology. In particular fB, or more

strictly fB
√
BB (whereBB, theB parameter ofB0–B̄0 mixing, is expected to be close to one),

is one of the principal unknown quantities needed for the determination of the CP -violating

phase in the Standard Model, as well as other properties of weak decays. Lattice QCD offers

the opportunity for a non-perturbative computation of the operator matrix elements which

are necessary for the determination of the decay constants and B parameters.

During the last few years there have been several lattice computations of the decay constants

of “heavy-light” pseudoscalar (and vector) mesons. The results for the decay constant of

the D meson, obtained using the Wilson action for the quarks, are in the region of 200 MeV

(using a normalisation for which fπ =132 MeV). For example, in his 1989 review S. Sharpe

quoted [1] fD ' 180 ± 25(stat)± 30(syst) MeV as his summary of the lattice results. More

recent simulations with Wilson fermions also give results in this range [2]–[5]. The experi-

mental bound is fD < 290 MeV [6].

In the heavy-quark limit the scaling law for the decay constant of a heavy-light pseudoscalar

meson is fP
√
MP ∼ constant (up to mild logarithmic corrections). Lattice simulations using

heavy-quark masses in the charm region indicate that there are large corrections to this

scaling law (of order 40% at the charm quark mass, decreasing to about 15% at the mass of

the bottom quark) [2, 3, 4]. The value of the decay constant of the B meson deduced from

these simulations is in the region of 180 MeV. The conclusion that there are violations of the

scaling law is supported by the large value for fP
√
MP deduced from simulations obtained

using a static (i.e infinitely-massive) heavy quark [5, 7, 8, 9, 10, 11, 12].

The important results and conclusions quoted above were obtained from simulations in

which the mass of the heavy quark is large in lattice units (up to about a half). One

may therefore worry that discretisation errors significantly contaminate the results. In this

paper we present the results for decay constants of heavy-light mesons computed using the

O(a)-improved lattice action proposed by Sheikholeslami and Wohlert [13], with which the

discretisation errors in operator matrix elements (and hence in the computed values of the

decay constants) can be reduced from O(mQa) to O(αsmQa), where mQ is the mass of the

heavy quark [14]. This formal reduction in discretisation errors provides an important check

on the stability of results and conclusions obtained with Wilson fermions.
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The results presented in this paper were obtained from two simulations of quenched QCD,

using the Sheikholeslami–Wohlert (SW) or “clover” fermion action for the quarks (see Sub-

section 1.1 below). Our main results come from a simulation on a 243×48 lattice at β = 6.2,

for which 60 gauge field configurations were generated. Details of this simulation and the

determination of the values of the Wilson hopping parameter corresponding to the chiral

limit, κcrit, and to the mass of the strange quark have been presented in ref. [15]. The heavy

quarks have masses in the region of the charm quark mass and we study the behaviour of the

decay constants with the mass of the heavy quark. Interpolating to the mass of the charm

quark itself, and extrapolating the results to the mass of the b quark, we find that our best

results for the decay constants of the B and D mesons are

fD = 185
+ 4

− 3
(stat)

+ 42

− 7
(syst) MeV (1)

fB = 160
+ 6

− 6

+ 53

− 19
MeV (2)

fDs
fD

= 1.18
+ 2

− 2
(3)

fBs
fB

= 1.22 + 4

− 3
. (4)

The details of this calculation and a complete set of results are presented in Section 2.

The second simulation is on a 163 × 48 lattice at β = 6.0, using 36 configurations. The

results, which are consistent with those mentioned above, are presented in Section 3. In

order to study the effects of improvement on the calculation of heavy-light decay constants,

we have repeated the computation for both the Wilson and SW actions using a subset of 16

of these configurations. The results and a discussion are presented in Subsection 3.2.

We have also computed fB in the static approximation (in which contributions of O(1/mb)

are neglected). A discussion of the calculation and of the results is presented in Section 4.

The result from the simulation at β = 6.2, on 20 of the 60 configurations, is

f stat
B = 253

+ 16

− 15
(stat)

+ 105

− 14
(syst) MeV, (5)

and the result at β = 6.0 on all 36 configurations is

f stat
B = 286

+ 8

− 10

+ 67

− 42
MeV. (6)

Finally, Section 5 contains our conclusions.
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1.1 Improved Action and Operators

The SW action is

SSWF = SWF − i
κ

2

∑

x,µ,ν

q̄(x)Fµν(x)σµνq(x), (7)

where SWF is the Wilson action:

SWF =
∑

x

{
q̄(x)q(x)− κ

∑

µ

[
q̄(x)(1− γµ)Uµ(x)q(x+ µ̂) + q̄(x+ µ̂)(1 + γµ)U †µ(x)q(x)

]}
. (8)

The decay constants of heavy-light pseudoscalar and vector mesons are computed using

lattice axial and vector currents as interpolating operators. In order to obtain O(a)-improved

matrix elements we use “rotated” operators [14]:

Q̄(x)(1 +
1

2
γ· ←D) Γ (1 − 1

2
γ· →D) q(x), (9)

where Γ is one of the Dirac matrices (either γµγ5 or γµ), and Q and q represent the fields of

the heavy and light quark respectively.

In the static effective theory, in which the heavy propagator is expressed in terms of the

link variables [16], it is sufficient to rotate the light-quark fields only [17], i.e. to use the

operators

Q̄(x) Γ (1 − 1

2
γ· →D) q(x), (10)

in order to eliminate the O(a)-discretisation errors.

1.2 Renormalisation Constants ZV and ZA

In order to determine the physical values of the decay constants from those obtained in

lattice simulations using the interpolating operators in eq. (9), it is necessary to know the

corresponding renormalisation constants. These are defined by requiring that ZAA
latt
µ and

ZV V
latt
µ are the correctly normalised currents, where the superscript “latt” denotes that

the operator is a lattice current. These renormalisation constants have been calculated at

one-loop order in perturbation theory for the SW action with rotated operators [18]:

ZV = 1− 0.10g2 (11)

ZA = 1− 0.02g2. (12)

In this paper they are evaluated using the “boosted” coupling suggested in ref. [19]; specifi-

cally, we use g2 = 6/(β u4
0), where u0 is a measure of the average link variable, for which we
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take u0 = (8κcrit)
−1. It has been suggested [19, 20] that the use of such an effective coupling,

rather than the bare lattice coupling, resums some of the large higher-order corrections, and

in particular some of the tadpole diagrams. Using the measured values of κcrit from our

simulations, we obtain ZA ' 0.97 (0.96) and ZV ' 0.83 (0.82) for the simulation at β = 6.2

(6.0).

In a recent non-perturbative determination of these renormalisation constants, obtained by

requiring that the correctly-normalised currents obey the continuum Ward Identities, it was

found that ZV = 0.824(2) and ZA = 1.09(3) [21]. These results were obtained from a

simulation at β = 6.0 for one value of the quark mass. It remains to be checked that the

results are independent of the quark mass and insensitive to small variations in β. For

this reason, we use the perturbative values, given above, throughout the paper. We note,

however, that the non-perturbative value of ZA may be larger by about 15%. In ref. [15]

we obtained fπ/mρ = 0.138 + 6

− 9
, using the perturbative value of ZA. A larger value of ZA,

such as ZA = 1.09, would bring this result closer to the physical value of 0.172. However,

we also observed that fK/fπ, which does not require ZA, was in very good agreement with

the experimental value, and therefore we quote values for the ratios fD/fπ and fB/fπ in the

following sections.

The normalisation of the axial current in the static effective theory is discussed in Section 4.

1.3 Error Estimation

Statistical errors are obtained from a bootstrap procedure [22]. This involves the creation

of 1000 bootstrap samples from the original set of N configurations by randomly selecting

N configurations per sample (with replacement). Correlators are fitted for each bootstrap

sample by minimising χ2. During the fits, correlations among different timeslices are taken

into account, whereas correlations among different values of the quark mass are neglected.

The latter correlations are preserved by using the same sequence of bootstrap samples at each

quark mass. When extrapolating our results to the chiral limit and physical meson masses,

the correlation matrix for the fitted quantities is estimated from the full bootstrap ensemble.

All quoted statistical errors are obtained from the central 68% of the corresponding bootstrap

distributions [23].

We attempt to quantify the systematic error arising from the uncertainty in the value of

the lattice spacing, a, determined from properties of light hadrons, and from the string ten-
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sion [15]. The differences between results obtained using our central value for a−1 [GeV] and

our upper and lower estimates are quoted as systematic uncertainties in the final estimates

for decay constants in physical units. Hereafter, where we quote two errors, the first is

statistical and the second is systematic.

1.4 Extended Interpolating Operators

In order to isolate the ground state in correlation functions effectively, it is useful to use

extended (or “smeared”) interpolating operators for the mesons. In particular, in the static

theory it has been found to be essential to use smeared operators in order to obtain any

signal for the ground state [24]. In this study we use gauge-invariant Jacobi smearing on

the heavy-quark field (described in detail in ref. [25]), in which the smeared field, QS(~x, t),

is defined by

QS(~x, t) ≡
∑

~x′
J(x, x′)Q(~x′, t), (13)

where

J(x, x′) =
N∑

n=0

κnS∆n(x, x′) (14)

and

∆(x, x′) =
3∑

i=1

{δ~x′,~x−ı̂U †i (~x− ı̂, t) + δ~x′,~x+ı̂Ui(~x, t)}. (15)

Wuppertal smearing [26], which uses the operator (1−κS∆)−1 as the kernel of the smearing,

corresponds to N = ∞, provided that κS is sufficiently small to guarantee convergence.

Following the discussion in ref. [25], we choose κS = 0.25 and use the parameter N to

control the smearing radius, defined by

r2 ≡
∑
~x |~x|2|J(x, 0)|2
∑
~x |J(x, 0)|2 . (16)

The values of N and r used in each of the calculations below will be quoted in the corre-

sponding sections.

2 Decay Constants from the Simulation at β = 6.2

In this section we present the results obtained for the decay constants of heavy-light mesons

from our simulation on 60 configurations of a 243×48 at β = 6.2, using the SW action in the
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quenched approximation. The computations are performed for four different values of the

mass of the heavy quark, corresponding to κh = 0.121, 0.125, 0.129 and 0.133, and for three

values of the mass of the light quark, corresponding to κl = 0.14144, 0.14226 and 0.14262.

The mass of the charm quark corresponds approximately to κh = 0.129. The value of the

hopping parameter corresponding to the mass of the strange quark is κs = 0.1419
+ 1

− 1
and

the critical value is κcrit = 0.14315
+ 2

− 2
[15].

The decay constants are determined by computing two-point correlation functions of the

form

CQR
J1J2

(t) =
∑

~x

〈0|JQ1 (x)J †R2 (0)|0〉 (17)

where J1 and J †2 are interpolating operators which can annihilate or create the pseudoscalar

or vector meson being studied. The labels Q,R denote whether a local (L) or smeared (S)

interpolating operator is being used. In this simulation we use Jacobi smearing with N = 75,

corresponding to a smearing radius of r = 5.2. The decay constants are obtained from the

matrix elements of the local operators, which are determined by computing both the CSS

and CLS correlation functions.

In order to determine the decay constant, it is necessary to know the value of the lattice

spacing in physical units. This can be done by relating the lattice measurements of some

dimensionful quantity to its physical value, e.g. the mass of a light hadron or fπ. Among

the other frequently-used choices are the string tension,
√
K, and the 1P − 1S mass split-

ting in charmonium. Using mρ to set the scale in our study of light hadrons [15] we found

a−1(mρ) = 2.7(1) GeV, and a mass spectrum in physical units which was close to experimen-

tal values. Furthermore, our determination of the string tension [23] gave a−1 = 2.73(5) GeV.

Encouraged by the consistency of these results, we use

a−1 = 2.7 GeV. (18)

However, the study described in ref. [15] showed that the measurement of the pion decay

constant gave a higher value for the scale, i.e. a−1(fπ) = 3.4 + 2

− 1
GeV, using the perturbative

value for ZA. In order to get an estimate of the systematic uncertainties in the final numbers,

we evaluate all our results using the central value of a−1(fπ) as well, and quote the difference

as the upper systematic error on decay constants. The lower systematic error is obtained

from the uncertainty of −0.1 GeV in a−1(mρ).

In an attempt to reduce the systematic errors associated with the value of the renormalisation

6



constant of the axial current, we also compute fD,B/fπ, and determine fD,B by using the

physical value of fπ.

2.1 Decay Constants of Pseudoscalar Mesons

In order to determine the pseudoscalar decay constants, we start by fitting the two-point

correlation function

CSS
PP (t) ≡

∑

~x

〈0|P S(~x, t)P †S(0)|0〉

→ Z2
PS

2MP
exp(−MPLt/2) cosh (MP (Lt/2 − t)) , (19)

where P is the pseudoscalar density, ZPS = 〈0|P S(0)|P 〉 and Lt is the temporal extent

of the lattice. This correlation function gives the best determination of the masses of the

heavy-light pseudoscalars. Symmetrizing in Euclidean time, the fitting range was chosen to

be 13 ≤ t ≤ 22 for all three values of the light-quark mass. Good plateaus in the effective

mass were observed and stable fits obtained. The values of the masses of the pseudoscalar

and vector mesons for the twelve κh-κl combinations are presented in Table 1. The values

obtained by linear extrapolation to the chiral limit for the light quark are also tabulated.

At large values of t, the ratio of correlation functions

CLS
AP (t)

CSS
PP (t)

→ 〈0|A
L
4 (0)|P 〉

〈0|P S(0)|P 〉 tanh (MP (Lt/2− t)) (20)

is used to extract the pseudoscalar decay constant, where A4 is the temporal component of

the axial current. The ratio is fitted in the range 15 ≤ t ≤ 22 with the pseudoscalar mass MP

(in each bootstrap sample) constrained to its value extracted from fits to eq. (19). In Fig. 1

we plot the ratio of correlators together with the fit to eq. (20) as a function of t. Using the

value of ZPS obtained from the fits of eq. (19), the matrix elements of the local axial current

are obtained. Although there are other ways of determining these matrix elements, we find

that the ratios in eq. (20) give the most precise determination.

In Table 2 we present the results for the decay constants (in lattice units) of the pseudoscalar

mesons for the twelve κh-κl combinations, as well as the values obtained by linearly extrap-

olating the results to the chiral limit. We also tabulate the results for the quantity fP
√
MP

which, in the heavy-quark limit, is independent of the mass of the heavy quark (except for

a mild logarithmic dependence).
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κh κl MP MV

0.14144 0.924 + 3

− 1
0.944 + 4

− 2

0.121 0.14226 0.900
+ 3

− 2
0.920

+ 4

− 3

0.14262 0.890
+ 4

− 3
0.909

+ 5

− 4

κcrit 0.875
+ 4

− 3
0.894

+ 6

− 4

0.14144 0.822
+ 3

− 1
0.847

+ 4

− 2

0.125 0.14226 0.799
+ 3

− 2
0.823

+ 4

− 3

0.14262 0.789
+ 4

− 2
0.811

+ 5

− 4

κcrit 0.773
+ 5

− 2
0.797

+ 6

− 4

0.14144 0.715
+ 3

− 1
0.745

+ 4

− 2

0.129 0.14226 0.691
+ 3

− 2
0.721

+ 4

− 3

0.14262 0.681
+ 4

− 2
0.711

+ 5

− 4

κcrit 0.665
+ 5

− 2
0.695

+ 6

− 4

0.14144 0.599
+ 3

− 1
0.637

+ 3

− 2

0.133 0.14226 0.574
+ 3

− 2
0.613

+ 4

− 3

0.14262 0.564 + 4

− 2
0.603 + 5

− 4

κcrit 0.546
+ 4

− 2
0.588

+ 6

− 4

Table 1: Masses (in lattice units) of the pseudoscalar and vector mesons

for the twelve κh-κl combinations at β = 6.2 on a 243 × 48 lattice. Also

presented are the values obtained by linear extrapolation to the chiral limit

(κl → κcrit = 0.14315).
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κh κl fP /ZA fP
√
MP/ZA 1/(fV ZV )

0.14144 0.086 + 1

− 1
0.083 + 2

− 1
0.124 + 2

− 3

0.121 0.14226 0.079
+ 1

− 1
0.075

+ 2

− 1
0.116

+ 3

− 3

0.14262 0.076
+ 2

− 2
0.071

+ 2

− 2
0.111

+ 3

− 3

κcrit 0.071
+ 2

− 1
0.066

+ 2

− 1
0.105

+ 4

− 4

0.14144 0.086
+ 1

− 1
0.078

+ 1

− 1
0.141

+ 3

− 3

0.125 0.14226 0.079
+ 1

− 1
0.070

+ 1

− 1
0.132

+ 3

− 3

0.14262 0.076
+ 2

− 2
0.067

+ 2

− 2
0.128

+ 4

− 4

κcrit 0.071
+ 2

− 1
0.062

+ 2

− 1
0.123

+ 4

− 4

0.14144 0.085
+ 1

− 1
0.071

+ 1

− 1
0.163

+ 3

− 3

0.129 0.14226 0.078
+ 1

− 1
0.065

+ 1

− 1
0.155

+ 3

− 3

0.14262 0.075
+ 2

− 1
0.062

+ 1

− 1
0.151

+ 4

− 4

κcrit 0.071
+ 2

− 1
0.057

+ 2

− 1
0.146

+ 5

− 5

0.14144 0.082
+ 1

− 1
0.063

+ 1

− 1
0.193

+ 3

− 4

0.133 0.14226 0.076
+ 1

− 1
0.057

+ 1

− 1
0.186

+ 3

− 4

0.14262 0.073 + 1

− 1
0.055 + 1

− 1
0.183 + 5

− 5

κcrit 0.069
+ 1

− 1
0.051

+ 1

− 1
0.179

+ 5

− 5

Table 2: The decay constants (in lattice units) of the pseudoscalar and vector

mesons. Also shown are the results for the combination fP
√
MP which in

the heavy-quark limit is independent of the heavy-quark mass (up to mild

logarithmic corrections).
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Figure 1: The ratio of correlators defined in eq. (20) plotted versus t for

κh = 0.129, κl = 0.14262. The curve represents the fit using timeslices

15–22.

We start the discussion of our results with the behaviour of the pseudoscalar decay constants

as a function of the mass of the meson, with all dimensionful quantities given in lattice units.

In the heavy-quark limit, the quantity fP
√
MP scales like

fP
√
MP = const.× [αs(MP )]−2/β0 , MP −→∞. (21)

In order to detect possible deviations from this scaling law we plot in Fig. 2 the quantity1

Φ̂(MP ) ≡ (αs(MP )/αs(MB))2/β0Z−1
A fP

√
MP (22)

1The normalization factor αs(MB)−2/β0 is convenient when comparing these results with those obtained

in the static theory.
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as a function of 1/MP . We approximate αs(M) by

αs(M) =
2π

β0 log(M/ΛQCD)
(23)

where we take ΛQCD = 200 MeV, and β0 = 11 − 2
3
nf , with nf = 0 in the quenched approx-

imation. From the figure we see that Φ̂(MP ) increases as the mass of the heavy quark is

increased (in agreement with the behaviour found using the Wilson action for the quarks

[2, 3, 4]). In order to quantify this behaviour, we fit Φ̂(MP ) to either a linear or quadratic

function of 1/MP :

Φ̂(MP ) = A
(

1 − B

MP

)
(24)

or

Φ̂(MP ) = C

(
1 − D

MP
+

E

M2
P

)
. (25)

We have performed these fits twice; once using the values of fP
√
MP for all four values of κh,

and once using those for only the smallest three κh’s (i.e. for the heaviest three heavy-quark

masses). The results of the fits are given in Table 3. We find that the non-scaling corrections

are of O(30%) for fD and O(10%) for fB, in agreement with previous results obtained using

Wilson fermions [2, 3, 4]. From the quadratic fit to the data at all four heavy-meson masses

we find, in physical units,

Ca−3/2 = 0.45
+ 2

− 2

+ 19

− 3
GeV3/2

Da−1 = 0.84
+ 11

− 8

+ 22

− 3
GeV

Ea−2 = 0.28
+ 7

− 9

+ 16

− 2
GeV2. (26)

The second error in eq. (26) corresponds solely to the uncertainty in the scale. It should be

mentioned that ignoring the residual logarithmic dependence of fP
√
MP on MP makes the

slope more pronounced. However it is clear from Fig. 2 and Table 3 that the logarithmic

corrections to the scaling law can by no means account for the observed slope in fP
√
MP .

We use the parameters of the fits in Table 3 to make our predictions for the values of the

decay constants fD and fB. The results corresponding to the four fits are presented in

Table 4. From this table it is clear that there is a further systematic uncertainty in fB of

about 11 MeV from extrapolating using either linear or quadratic fits. In contrast to this,

since we interpolate to mD, the results for fD are very stable. It should be emphasised that

choosing a different value for ΛQCD (e.g. ΛQCD = 250 MeV), or for the anomalous dimension

(e.g., by taking nf = 4), changes the results by only about 1 MeV.
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Linear Fit Quadratic Fit

A B C D E

4 κh’s 0.089
+ 3

− 2
0.199

+ 5

− 7
0.101

+ 5

− 5
0.31

+ 4

− 3
0.038

+ 9

− 13

3 κh’s 0.092
+ 3

− 3
0.216

+ 9

− 10
0.102

+ 6

− 8
0.33

+ 10

− 5
0.045

+ 18

− 39

Table 3: Values of the parameters of the linear and quadratic fits to the

behaviour of the pseudoscalar decay constants with the mass of the mesons

(as defined in the text).

Linear Fit Quadratic Fit

fD fB fD fB

4 κh’s 185
+ 4

− 3

+ 45

− 7
149

+ 5

− 3

+ 52

− 7
185

+ 4

− 3

+ 42

− 7
160

+ 6

− 6

+ 53

− 8

3 κh’s 186
+ 4

− 3

+ 41

− 7
154

+ 5

− 4

+ 53

− 8
185

+ 4

− 3

+ 42

− 7
160

+ 7

− 7

+ 54

− 7

Table 4: Values of the decay constants fB and fD in MeV, corresponding to

the linear and quadratic fits.

Taking the results from the quadratic fit using all four κh values we find:

fD = 185
+ 4

− 3

+ 42

− 7
MeV (27)

fB = 160
+ 6

− 6

+ 53

− 19
MeV (28)

where we have included the uncertainty of 11 MeV from the extrapolations in the systematic

error quoted for fB. We take the results presented in equations (27) and (28) as our best

estimates of the decay constants of the D and B mesons.

In ref. [3] it was found useful to use the pion decay constant, fπ, to set the scale in the

computations of the decay constants of heavy-light mesons. By calculating fD/fπ and fB/fπ

it may be expected that some of the systematic errors cancel, since, in particular, the ratios

are independent of ZA. Our results for the decay constants obtained in this way are, as

expected, close to the upper systematic error margins in Table 4. We find

(fD
fπ

)
× 132 MeV = 232

+ 12

− 5
MeV (29)

(fB
fπ

)
× 132 MeV = 201

+ 12

− 8
MeV. (30)
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Figure 2: The data for Φ̂(MP ) plotted against the inverse meson mass. The

open symbols denote points with κl < κcrit, whereas full symbols denote

those extrapolated to κcrit. The solid line represents the linear fit to the

chirally-extrapolated points using the three heaviest meson masses, whereas

the dashed curve results from a quadratic fit to all four.

Finally in this subsection, we present our results for fDs and fBs. These are obtained by

interpolating the measured values of the decay constants given in Table 2 to κl = κs =

0.1419
+ 1

− 1
[15]. The extrapolations in the heavy-quark masses are done as above. We find

fDs
fD

= 1.18
+ 2

− 2
(31)

fBs
fB

= 1.22
+ 4

− 3
. (32)

13



In physical units we obtain

fDs = 212 + 4

− 4

+ 46

− 7
MeV (33)

fBs = 194 + 6

− 5

+ 62

− 9
MeV. (34)

Recently the first measurement of fDs has been made by the WA75 collaboration [27], who

found fDs = (232± 45± 20± 48 )MeV. Our result is in good agreement with the measured

value, and also with previous lattice calculations using Wilson fermions [3, 5].

2.2 Decay Constants of Vector Mesons

In this subsection we present our results for the decay constants of heavy-light vector mesons.

These are defined by

〈0|Vµ|V 〉 ≡ εµ
M2

V

fV
= ZV 〈0|V L

µ (0)|V 〉, (35)

where |V 〉 represents a state containing a vector meson V , with mass MV , polarisation vector

εµ and decay constant fV . V L
µ denotes the local lattice vector current, defined in eq. (9),

with Γ = γµ, which has to be multiplied by the renormalisation constant ZV . The vector

mass MV is extracted from fits to the correlator

CSS
V V ≡

3∑

j=1

∑

~x

〈0|V S
j (~x, t)V S

j (0)|0〉

→ −3Z2
V S

2MV
exp(−MV Lt/2) cosh(MV (Lt/2 − t)), (36)

where V S
j is the jth spatial component of the smeared vector operator and ZV S is defined

through

〈0|V S
j (0)|V 〉 = εjZV S . (37)

Fitting timeslices 14 ≤ t ≤ 23, symmetrized, we obtain the vector meson masses shown in

Table 1. In order to extract the matrix element of the local vector current we fit the ratio

CLS
V V (t)

CSS
V V (t)

−→ −
∑3
j=1 〈0|V L

j (0)|V 〉ε∗j
3ZV S

(38)

to a constant in the fitting interval 15 ≤ t ≤ 23.

The results for 1/fV for the twelve κh − κl combinations are presented in Table 2, together

with those obtained after extrapolation to the chiral limit. The chirally-extrapolated values

14



M Linear Fit Quadratic Fit

∞ 1.02
+ 5

− 4
1.09

+ 7

− 8

(MB + 3M∗
B)/4 0.93

+ 4

− 3
0.96

+ 4

− 5

(MD + 3M∗
D)/4 0.77

+ 2

− 2
0.77

+ 2

− 2

Table 5: The quantity Ũ(M) obtained from linear and quadratic fits.

for f−1
V Z−1

V are now interpolated to the D∗ mass using a quadratic fit to the data at all four

values of κh, giving,

f−1
D∗ = 0.110

+ 5

− 5

+ 36

− 5
. (39)

This is slightly below, but still compatible with, earlier studies (e.g. [3]) when the systematic

error is taken into account. This result remains unaltered if a linear fit is used instead of a

quadratic one.

2.3 A Test of the Heavy Quark Symmetry

In the heavy-quark limit, the decay constants of heavy-light pseudoscalar and vector mesons

are related by [28]

U(M) ≡ fV fP
M

=

(
1 +

8

3

αs(M)

4π
+O(1/M)

)
, (40)

where we take the heavy mass scale, M , to be the spin-averaged meson mass, M = (MP +

3MV )/4.

In order to test the predicted behaviour of U(M), we take the chirally-extrapolated values

for both the pseudoscalar and vector decay constants, and fit

Ũ (M) ≡ U(M)/

{
1 +

8

3

αs(M)

4π

}
(41)

to either a linear or quadratic function of 1/M . The data together with the fits are shown

in Fig. 3, and we display our results in Table 5. The perturbative values of ZA and ZV are

used.

The fact that Ũ(∞) is around one in Table 5 provides support for our parametrisations, in

eqs. (24) and (25), of the non-scaling behaviour of the decay constants for finite heavy-quark

masses.
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Figure 3: The quantity Ũ (M) plotted against the inverse spin-averaged mass.

Linear and quadratic fits are represented by the solid and dashed curves,

respectively. Also shown are the statistical errors of the extrapolation to the

infinite mass limit.

3 Decay Constants from the Simulation at β = 6.0

In this section we describe the results of a computation of the decay constants using the

SW fermion action at β = 6.0 on a 163 × 48 lattice. These results were obtained using

36 configurations, with light-quark masses corresponding to κl = 0.1432, 0.1440 and 0.1445.

The corresponding light-light pseudoscalar and vector meson masses, and pseudoscalar decay

constants, all in lattice units, are presented in Table 6. The values of the hopping parameter

corresponding to the chiral limit and the strange quark mass are κcrit = 0.14556
+ 6

− 6
and

16



κl mπ mρ fπ/ZA

0.1432 0.386
+ 4

− 4
0.51

+ 2

− 1
0.088

+ 2

− 3

0.1440 0.311
+ 6

− 5
0.47

+ 3

− 2
0.080

+ 2

− 4

0.1445 0.257
+ 5

− 6
0.43

+ 6

− 3
0.075

+ 2

− 5

κcrit = 0.14556
+ 6

− 6
— 0.38

+ 5

− 4
0.065

+ 2

− 6

Table 6: Masses of light-light pseudoscalar and vector mesons, and the pseu-

doscalar decay constants at β = 6.0.

κs = 0.1437
+ 4

− 5
respectively. Using the mass of the ρ meson to determine the value of

the lattice spacing, we find a−1 = 2.0
+ 3

− 2
GeV, whilst using fπ we find a−1 = 2.1

+ 2

− 1
GeV.

These two results are compatible, and below we will use the value

a−1 = 2.0
+ 3

− 2
GeV (42)

to convert the results from lattice to physical units.

We have computed the heavy-light correlation functions as series in κh (the hopping-parameter

expansion [29]), thus enabling us to obtain the decay constants at any value of the mass of

the heavy quark, without explicitly computing the heavy-quark propagators. The decay con-

stants are obtained by fitting to eq. (19) and eq. (20), over the range 12 ≤ t ≤ 18 for both

fits. We employ the Jacobi smearing algorithm with N = 50, corresponding to a smearing

radius of r = 4.2.

In an attempt to improve our understanding of the discretisation errors, we have also com-

puted the decay constants for the Wilson action at one value of the light-quark mass, using

a subset of 16 of the 36 configurations. The comparison of the results for the two actions is

presented in Subsection 3.2.

3.1 Pseudoscalar Decay Constants

In Fig. 4 we plot the chirally-extrapolated values of Φ̂(MP ) as a function of 1/MP , for 11

values of the heavy-quark mass. We fit the points corresponding to the five lightest meson

masses (for which mQ = 1/2(1/κh − 1/κcrit) < 0.7, as was the case at β = 6.2) to eq. (25),

17



and this is shown as the solid curve in the figure. For the coefficients of the fit we find:

C = 0.18
+ 3

− 3
; D = 0.45

+ 13

− 5
; E = 0.08

+ 4

− 9
. (43)

In physical units we obtain

Ca−3/2 = 0.50 + 9

− 9

+ 12

− 7
GeV3/2

Da−1 = 0.91 + 21

− 26

+ 14

− 9
GeV

Ea−2 = 0.32
+ 16

− 36

+ 10

− 6
GeV2 (44)

in good agreement with the results at β = 6.2, quoted in eq. (26). It should be noted that

the inclusion of all 11 data points makes no significant difference to the fit.

The values for the decay constants in physical units are:

fD = 199
+ 14

− 15

+ 27

− 19
MeV (45)

fB = 176
+ 25

− 24

+ 33

− 15
MeV (46)

fDs
fD

= 1.13 + 6

− 7
(47)

fBs
fB

= 1.17
+ 12

− 12
. (48)

All these numbers are in good agreement with the corresponding results from the simulation

at β = 6.2. Finally, for the ratios fD/fπ and fB/fπ we obtain

(fD
fπ

)
× 132 MeV = 211

+ 26

− 11
MeV (49)

(fB
fπ

)
× 132 MeV = 186

+ 35

− 21
MeV. (50)

3.2 Comparison of Results Using Wilson and SW Actions

For 16 of the configurations, we have computed the decay constants for the Wilson fermion

action, again using the hopping-parameter expansion. We compute light-quark propagators

at a single value of the hopping parameter, κWl = 0.155, corresponding to a pseudoscalar-

meson mass of 0.30 + 1

− 1
. This was chosen to match the SW pseudoscalar-meson mass of

0.31
+ 2

− 1
obtained at κSW

l = 0.144 on the same set of configurations.
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Figure 4: The chirally-extrapolated data for Φ̂(MP ) at β = 6.0 plotted

against the inverse meson mass. The solid curve represents a quadratic fit

to the points denoted by circles. Points represented by diamonds are not

included in the fit. The dashed curves are the 68% confidence bounds on the

fit.

In Fig. 5 we plot fP
√
MP as a function of 1/MP . Using the conventional normalisation of√

2κ for the quark fields, we see a clear divergence between the results for the two actions for

mQ > 0.7; the Wilson results turn over and decrease. However, we note that uncorrelated

χ2 fits of the Wilson points, at the lightest few meson masses, to eqs. (24) and (25) would

yield coefficients of the 1/MP term broadly consistent with previous Wilson analyses.

The figure also shows the results obtained with the Wilson action, but using the normali-

sation
√

1− 6κ̃ for the quark fields [5, 19, 30], where κ̃ = u0κ and u0 = 1/(8κcrit). It has

been suggested that this normalisation may absorb some of the discretisation errors [19],
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Figure 5: fP
√
MP for both the Wilson and SW actions. Diamonds denote

points obtained with the Wilson action in the conventional normalisation,√
2κ, whereas squares denote points normalised by

√
1− 6κ̃. Results using

the SW action are represented by circles. The solid curves are quadratic fits

in 1/MP to fP
√
MP for the Wilson action, with fields normalized by

√
1− 6κ̃,

and for the SW action. The dashed curve is to guide the eye.

and indeed the corresponding results agree remarkably with those obtained using the SW

action. This agreement provides considerable motivation for a theoretical study to investi-

gate whether there is any formal connection between the ansatz above and the improvement

programme initiated by Symanzik [31].
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4 fB in the Static Limit

An alternative and complementary approach to heavy-quark physics using lattice QCD was

proposed by Eichten [16]. This technique is based on an expansion of the heavy-quark

propagator in inverse powers of the quark mass. In practice, one keeps just the leading term,

given by (at zero velocity)

SQ(~x, t;~0, 0) =

{
θ(t)e−mQt

1 + γ4

2
+ θ(−t)emQt1− γ

4

2

}
δ(3)(~x)P~0(t, 0), (51)

where P~0(t, 0) is the product of links from (~0, t) to the origin, for example for t > 0,

P~0(t, 0) = U †4(~0, t− 1)U †4 (~0, t− 2) · · ·U †4(~0, 0). (52)

At sufficiently large times

∑

~x

〈A4(~x, t)A†4(0)〉 → f2
PMP

2
e−MP t, (53)

where Aµ is the improved axial current of eq. (10) with Γ = γµγ5. Since the only dependence

on mQ in eq. (53) arises through the exponential factor in eq. (51), we deduce the scaling law

that fP
√
MP is independent of the heavy-quark mass. Matching the result from the Heavy

Quark Effective Theory with that in the full theory introduces the logarithmic corrections

in eq. (21). The full scaling law is of the form

fP
√
MP = const.

[
(αs(MP ))−2/β0(1 +O(αs)) + O(1/MP )

]
. (54)

The objective of lattice computations is to determine the constant. We refer to the value of

fB obtained using eq. (54), but dropping the O(1/MB) corrections, as f stat
B .

We compute the two correlation functions, CSS and CLS, defined by2

CSS(t) =
∑

~x

〈0|AS
4 (~x, t)A†S4 (~0, 0)|0〉 → (ZS)2e−∆E t (55)

CLS(t) =
∑

~x

〈0|AL
4 (~x, t)A†S4 (~0, 0)|0〉 → ZLZSe−∆E t, (56)

where ∆E is the (unphysical) difference between the mass of the meson and the bare mass

of the heavy quark. The matrix element of the local operator AL
4 is obtained from the two

correlation functions CSS and CLS as follows. By fitting CSS(t) to the functional form given

in eq. (55) we obtain ZS (and ∆E). At sufficiently large times the ratio CLS(t)/CSS(t) →
ZL/ZS , so that ZL can be determined.

2In principle the behaviour of the correlation functions in eqs. (55) and (56) is given by a cosh (as in

eq. (19)), however the contribution of the backward-propagating meson is negligible in the time intervals we

will be considering.
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κl ∆E (ZS)2 ZL/ZS ZL

N = 140 N = 110 N = 140 N = 110 N = 140 N = 110 N = 140

0.14144 0.59
+ 1

− 1
141

+ 12

− 11
130

+ 10

− 11
0.0125

+ 3

− 3
0.0039

+ 1

− 1
0.149

+ 7

− 7
0.142

+ 7

− 6

0.14226 0.57
+ 1

− 1
127

+ 12

− 11
119

+ 10

− 11
0.0121

+ 3

− 3
0.0038

+ 1

− 1
0.137

+ 7

− 6
0.130

+ 7

− 6

0.14262 0.56 + 2

− 1
119 +12

−11
112 + 9

− 11
0.0120 + 3

− 3
0.0037 + 1

− 1
0.131 + 7

− 6
0.125 + 7

− 7

Table 7: Values of ∆E, (ZS)2, ZL/ZS and ZL at the three value of κl. ∆E

is obtained from the fit to CSS(t).

4.1 Results at β = 6.2

We now report on a computation of f stat
B at β = 6.2. The results presented here were obtained

using a subset of 20 of the 60 configurations discussed in Section 2, at the three values of the

light-quark mass. The values of f stat
B and f stat

Bs
were determined by extrapolating the results

to κcrit and κs respectively.

In view of the difficulty in isolating the ground state in correlation functions using the static

effective theory, we have compared results obtained with different numbers of iterations of

the Jacobi smearing algorithm [33]. For N less than about 80 the plateaus do not start until

at least t = 7. In this paper we present our results obtained with N = 110 and N = 140,

corresponding to r = 5.9 and 6.4 respectively, where plateaus begin as early as t = 4 and

hence statistical errors are smaller.

In Fig. 6(a) we show the effective masses obtained from CSS(t), and in Fig. 6(b) the ratio

CLS(t)/CSS(t), both at κl = 0.14226 and N = 140. Excellent plateaus are obtained, giving

us confidence that the ground state has indeed been isolated. In Table 7 we present the

results for ∆E, (ZS)2, ZL/ZS and ZL at all three values of κl, from fits over the range

5 ≤ t ≤ 11, without symmetrization in Euclidean time. ∆E is obtained from the fit to

CSS(t) for N = 140; consistent values are obtained for N = 110.

Extrapolating the results for ZL in Table 7 to the chiral limit and to the mass of the strange

quark we find:

ZL = 0.124
+ 8

− 7
at κl = κcrit (57)

ZL = 0.140
+ 7

− 6
at κl = κs (58)
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Figure 6: (a) The effective mass obtained from CSS(t), and (b) the ratio

CLS(t)/CSS(t) at β = 6.2, κl = 0.14226 and N = 140. The solid lines

represent fits from 5 ≤ t ≤ 11.

when obtained using smeared interpolating operators with N = 110 and

ZL = 0.117
+ 7

− 7
at κl = κcrit (59)

ZL = 0.134
+ 7

− 6
at κl = κs (60)

when using interpolating operators with N = 140.

When matching the static lattice theory to the full theory at a scale mb, the factor required

is [35]:

Zstat
A = ZA

(
1 +

αs(a
−1)

3π

[3
2

log a2m2
b − 2

])
. (61)
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ZA, relating the axial current in the static lattice theory to the static continuum one, has

been calculated in perturbation theory for the SW action [34, 17]:

ZA = 1 − 0.127 g2 ' 0.79. (62)

The value of 0.79 on the right hand side of eq. (62) was estimated using the boosted coupling

at β = 6.2. For the remaining factor in eq. (61), we take mb = 5 GeV, αs given by eq. (23)

with nf = 0, and ΛQCD = 200 MeV, yielding a number close to one (note that this is

insensitive to small changes in mb). Thus Zstat
A = 0.79 also. We find

f stat
B = 266 + 17

− 15

+ 110

− 14

(
Zstat
A

0.79

)
MeV (63)

f stat
Bs

= 300
+ 14

− 13

+ 125

− 16

(
Zstat
A

0.79

)
MeV, (64)

when using the interpolating operators with N = 110, and

f stat
B = 253

+ 16

− 15

+ 105

− 14

(
Zstat
A

0.79

)
MeV (65)

f stat
Bs

= 287
+ 14

− 13

+ 119

− 15

(
Zstat
A

0.79

)
MeV (66)

when using those with N = 140. The systematic errors quoted arise from the uncertainty in

the scale. We take the results in equations (65) and (66) as our best values, and these give

for the ratio:
f stat
Bs

f stat
B

= 1.14
+ 4

− 3
. (67)

4.2 Results at β = 6.0

We have performed a similar analysis on the 36 configurations at β = 6.0, using Jacobi

smearing with N = 50 and 150, corresponding to r = 4.2 and 6.2 respectively. The results

obtained using the two smearing radii are consistent, and our best results are those at N = 50

for which ZL = 0.211
+ 6

− 7
, yielding

f stat
B = 286

+ 8

− 10

+ 67

− 42

(
Zstat
A

0.78

)
MeV (68)

f stat
Bs

= 323
+ 14

− 14

+ 75

− 47

(
Zstat
A

0.78

)
MeV. (69)

f stat
Bs

f stat
B

= 1.13
+ 4

− 3
. (70)
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Figure 7: (a) The ratio CSL(t)/CSS(t) and (b) CLS(t)/CSS(t) plotted

against t for β = 6.0, κl = 0.1432, and N = 50 iterations used in the

Jacobi smearing algorithm.

These results at β = 6.0 are consistent with those at β = 6.2 presented in eqs. (65), (66)

and (67).

The results plotted in Fig. 6(b) for the ratio CLS(t)/CSS(t) appear to have considerably

smaller errors, and a clearer plateau, than in some recent studies [8, 10], in spite of our limited

statistics. We attribute this to the fact that we use the CLS correlation function in which

the smearing is performed at the source, rather than the CSL correlation function in which

the smearing is performed at the sink3. Of course, with sufficiently many configurations,

the results are independent of this choice. However in the CLS correlation function, the

3In both refs. [8] and [10] it was in fact the CSL, and not the CLS , correlation function which was

computed [36].
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heavy-quark propagator is sampled at many spatial points, whereas in the CSL correlation

function only the heavy-quark propagator at ~x = ~0 contributes. Thus it seems plausible that

the statistical errors are considerably reduced using the CLS correlation function.

To check this hypothesis, we have computed the ratios CLS(t)/CSS(t) and CSL(t)/CSS(t)

at β = 6.0, with κl = 0.1432. The results are plotted in Fig. 7, and indeed confirm that

there is an enormous improvement in precision when the correlation function CLS is used.

We believe that this, rather than the different method of smearing, is the reason for the

relatively poor plateaus in ref. [10].

4.3 Discussion

We begin with a comparison of the static and propagating results. Because we do not yet

have static results for the full set of configurations at β = 6.2, we focus on a comparison at

β = 6.0. In Fig. 8 we plot our results for the scaling quantity fP
√
MP (α(MP )/α(MB))6/33

from the simulation at β = 6.0 as a function of 1/MP (in lattice units), together with

our result for f stat
B

√
MB. The quadratic fit which we used to obtain our estimate for fB

in Subsection 3.1 gives an intercept at 1/MP = 0 which is about 25% and two standard

deviations below the static result; a similar discrepancy is observed at β = 6.2. There are

a number of possible reasons for this, e.g. uncertainties in the renormalisation constants

(which are different for the static and propagating quarks), residual discretisation errors in

the simulation of the propagating quarks, and uncertainties in the various extrapolations.

A better way of determining the consistency of the static and propagating results is to

include the static result in the quadratic fit. Such a fit using the full correlation matrix at

β = 6.0 gives a χ2/dof of 1.5. This is still acceptable, and provides further evidence that

using rotated operators with the SW action gives a sensible normalisation for propagating

heavy-quark fields. From this fit we obtain fB = 220
+ 6

− 7

+ 40

− 27
MeV, which is 44 MeV higher

than that obtained from the propagating points alone.

In Table 8 we present the results for f stat
B obtained by other groups, together with our values.

Although at β = 6.0 the values of ZL found by all groups and for both actions are in broad

agreement, the different treatment of systematics leads to the spread of results in f stat
B . It

has been suggested that f stat
B decreases as a→ 0 [12]. However, the agreement of the results

obtained with the Wilson and SW actions at β = 6.0, together with consistency between

our results at β = 6.0 and β = 6.2, suggests that the discretisation errors are small.
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Ref. Action β a−1 [GeV] Zstat
A f stat

B [MeV]

[11] Wilson 5.9 1.75 0.79 319 ± 11

[8] Wilson 6.0 2.0± 0.2 0.8 310 ± 25 ± 50

[9] Wilson 6.0 2.2± 0.2 0.8 366 ± 22 ± 55

[10] Wilson 6.0 2.11 ± 0.05 ± 0.10 0.8 350 ± 40 ± 30

[10] SW 6.0 2.05 ± 0.06 0.89 370 ± 40

This Work SW 6.0 2.0
+ 3

− 2
0.78 286

+ 8

− 10

+ 67

− 42

This Work SW 6.2 2.7
+ 7

− 1
0.79 253

+ 16

− 15

+ 105

− 14

[5] Wilson 6.3 3.21 ± .09 ± .17 0.69 235 ± 20 ± 21

[12] Wilson 5.74, 6.0, 6.26 1.12, 1.88, 2.78 0.71(8) 230 ± 22 ± 26

Table 8: Compilation of lattice results for f stat
B

5 Conclusions

In this paper we have carried out an extensive study of the decay constants of heavy-light

mesons using the SW action for the quarks. The use of the SW action confirms the large,

negative O(1/MP ) corrections to the scaling law fP
√
MP ∼ constant at the mass of the

charm quark and the significant corrections at the mass of the b quark, previously observed

with the Wilson action. However, from our comparison of results for the Wilson and SW

actions at β = 6.0, we observe clear evidence that the
√

2κ normalisation of the Wilson

quark fields fails for large quark mass. This failure is presumably due to large O(mQa)

effects. It has been suggested that such effects may largely be absorbed by the use of a

different normalization [5]. We find that such a normalization yields results in agreement

with those obtained using the SW action with rotated operators and the
√

2κ normalization

for the quark fields.

Our best estimates of fD and fB are

fD = 185
+ 4

− 3
(stat)

+ 42

− 7
(syst) MeV (71)

fB = 160
+ 6

− 6

+ 53

− 19
MeV, (72)

obtained using propagating quarks at β = 6.2. Our analysis at β = 6.0 yields entirely

consistent results. The latter analysis also suggests that including the static result in the

fits is likely to increase the value of fB by around 40 MeV.
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Figure 8: ZAΦ̂(MP ) at β = 6.0 from the simulation with propagating quarks

(open symbols) and the static theory (cross). The dashed curve is the fit to

the open circles, with the parameters of eq. (43); the square is the intercept

at 1/MP = 0. The solid curve is the fit with the static point included.

The most urgent extension of this work is to determine the B parameter for B0–B̄0 mixing,

since it is the combination fB
√
BB which is directly relevant for phenomenological studies

of the mixing and of CP -violation. A recent simulation with Wilson fermions found BB =

1.16 ± 0.07 [3], and it is important to confirm this result with the improved action.
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